If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+70t+5.8=0
a = -16; b = 70; c = +5.8;
Δ = b2-4ac
Δ = 702-4·(-16)·5.8
Δ = 5271.2
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(70)-\sqrt{5271.2}}{2*-16}=\frac{-70-\sqrt{5271.2}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(70)+\sqrt{5271.2}}{2*-16}=\frac{-70+\sqrt{5271.2}}{-32} $
| 4(x-3)-8=8x-4(x-7) | | 3(x-7)/2-+6=15 | | (2x-1)(9x+9)=0 | | 80/x-80/(x+10)=16/60 | | 4(x=5)=-2(x-28) | | x^2-0.32x-0.64=0 | | (t+1)^2+(t-8)^2=65 | | 5x-2+3x=50 | | 10=10t+2.5t^2 | | 45+h(5)=h | | 11.31=5.64-n | | 11=-1.5-5x | | 7x+1=17+11x | | 8m-9=15 | | 9x+9x+2x+3=x | | n-2(180)=900 | | 11x+10=-10+13 | | 3x=2(75-x) | | 3x=2(75—x) | | 10(3m+1=2(10m-5) | | f(-15)=-4(-15)+10 | | 15(x+3)^2-19(x+3)-8=0 | | 2+4x=7-5x | | 3x+4(x+5)=104 | | m/9-17=7 | | x+4x+5x-16=180 | | 2/3z+4=8 | | x+4x+5x-16=90 | | .40x+x=140 | | 13x−23=4x+13, | | 8x-7x=30 | | 11/2x-6=1/4x+4 |